2,568 research outputs found

    No More Freeways: Urban Land Use-Transportation Dynamics without Freeway Capacity Expansion

    Get PDF
    Observations of the various limitations of freeway capacity expansion have led to a provocative planning and policy question – What if we completely stop building additional freeway capacity. From a theoretical perspective, as a freeway transportation network matures, there exists a saturation point beyond which any additional freeway capacity would only be counterproductive from a welfare point of view, and worsen the existing urban transportation problems. Traditional benefit/cost analysis of individual freeway capacity expansion projects often ignores long-term induced demand and land use changes and does not represent a systems approach to this important theoretical issue. From a practical perspective, a no-more-freeway policy can relieve transportation funds for other potentially more effective usages, such as improving urban arterial street system, improving transit level of service and coverage, implementing demand management and pricing strategies, and facilitating more efficient land use patterns (e.g. high density in-fill and transit-oriented developments). This research answers the following critical land use-transportation planning questions. Improved knowledge on these issues should benefit planers and decision-makers who pursue mobility and sustainability objectives and have the power to shape future cities. (1). Under what conditions will freeway capacity expansion become counterproductive to urban planning objectives (where is the saturation point)? (2). How will land use and transportation evolve under a “No-More-Freeway” policy? (3). What are the implications of such a policy on congestion, land use efficiency, transportation finance, and social welfare? (4). What is the impact of a less restrictive “No-More-Freeway” policy that only allows private-section freeway investments and relieves public-section freeway investments for other compelling transportation needs. The analysis in this project builds upon a modeling tool, ABSOLUTE, developed by the P.I. in previous research projects. ABSOLUTE is an Agent-Based Simulator Of Land Use-Transportation Evolution, which translates planning policies such as the “No-More- Freeway” policy into alternative urban growth paths and possibly urban growth equilibria (land use and transportation system equilibria). Due to the “Small Start” nature of this OTREC project, the analysis focuses primarily on stylized urban areas, and empirical analysis of the “No-More- Freeway” policy is only conducted for one policy scenario on the Twin Cities, MN, area

    The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process

    Full text link
    © 2017 Elsevier B.V. The oxic-settling-anoxic (OSA) process, which involves an aerobic tank attached to oxygen- and substrate-deficient external anoxic reactors, minimizes sludge production in biological wastewater treatment. In this study, the microbial community structure of OSA was determined. Principal coordinate analysis showed that among the three operational factors, i.e., (i) redox condition, (ii) external reactor sludge retention time (SRText), and (iii) sludge interchange between aerobic and anoxic reactors, redox condition had the greatest impact on microbial diversity. Generally, reactors with lower oxidation-reduction potential had higher microbial diversity. The main aerobic sequencing batch reactor of OSA (SBROSA) that interchanged sludge with an external anoxic reactor had greater microbial diversity than SBRcontrol which did not have sludge interchange. SBROSA sustained high abundance of the slow-growing nitrifying bacteria (e.g., Nitrospirales and Nitrosomondales) and consequently exhibited reduced sludge yield. Specific groups of bacteria facilitated sludge autolysis in the external reactors. Hydrolyzing (e.g., Bacteroidetes and Chloroflexi) and fermentative (e.g., Firmicutes) bacteria, which can break down cellular matter, proliferated in both the external aerobic/anoxic and anoxic reactors. Sludge autolysis in the anoxic reactor was enhanced with the increase of predatory bacteria (e.g., order Myxobacteriales and genus Bdellovibrio) that can contribute to biomass decay. Furthermore, ÎČ- and Îł-Proteobacteria were identified as the bacterial phyla that primarily underwent decay in the external reactors

    Heuristics in permutation GOMEA for solving the permutation flowshop scheduling problem

    Get PDF
    The recently introduced permutation Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) has shown to be an effective Model Based Evolutionary Algorithm (MBEA) for permutation problems. So far, permutation GOMEA has only been used in the context of Black-Box Optimization (BBO). This paper first shows that permutation GOMEA can be improved by incorporating a constructive heuristic to seed the initial population. Secondly, the paper shows that hybridizing with job swapping neighborhood search does not lead to consistent improvement. The seeded permutation GOMEA is compared to a state-of-the-art algorithm (VNS4) for solving the Permutation Flowshop Scheduling Problem (PFSP). Both unstructured and structured instances are used in the benchmarks. The results show that permutation GOMEA often outperforms the VNS4 algorithm for the PFSP with the total flowtime criterion

    Quantum Interference Effects in Molecular Y- and Rhomb-Type Systems

    Get PDF
    In this paper we report the first observation of molecular population trapping in four level systems. Constructive and destructive quantum interferences between two sum-frequncy two-photon transitions in Y- and rhomb-type four-level systems, respectively, im sodium molecules have been experimentally achieved by using only one laser source. Their energy level schemes are featured by the extremely near-resonant enhancement of the equal-frequency two-photon transitions, sharing both the initial and the intermediate levels for the Y-type, and sharing both the initial and the final levels for the rhomb-type systems. Their novel spectral effects are to show seriously restrained Doppler-free UV peak at the nominal location of the induced two-photon transition with visible fluorescence in rhomb-type schems, and to show a strong extra UV peak but null visible fluorescence in the middle between the two dipole allowed two-photon transitions

    Pairwise comparison matrices and the error-free property of the decision maker

    Get PDF
    Pairwise comparison is a popular assessment method either for deriving criteria-weights or for evaluating alternatives according to a given criterion. In real-world applications consistency of the comparisons rarely happens: intransitivity can occur. The aim of the paper is to discuss the relationship between the consistency of the decision maker—described with the error-free property—and the consistency of the pairwise comparison matrix (PCM). The concept of error-free matrix is used to demonstrate that consistency of the PCM is not a sufficient condition of the error-free property of the decision maker. Informed and uninformed decision makers are defined. In the first stage of an assessment method a consistent or near-consistent matrix should be achieved: detecting, measuring and improving consistency are part of any procedure with both types of decision makers. In the second stage additional information are needed to reveal the decision maker’s real preferences. Interactive questioning procedures are recommended to reach that goal

    Assessing framing of uncertainties in water management practice

    Get PDF
    Dealing with uncertainties in water management is an important issue and is one which will only increase in light of global changes, particularly climate change. So far, uncertainties in water management have mostly been assessed from a scientific point of view, and in quantitative terms. In this paper, we focus on the perspectives from water management practice, adopting a qualitative approach. We consider it important to know how uncertainties are framed in water management practice in order to develop practice relevant strategies for dealing with uncertainties. Framing refers to how people make sense of the world. With the aim of identifying what are important parameters for the framing of uncertainties in water management practice, in this paper we analyze uncertainty situations described by decision-makers in water management. The analysis builds on a series of ÂżUncertainty DialoguesÂż carried out within the NeWater project with water managers in the Rhine, Elbe and Guadiana basins in 2006. During these dialogues, representatives of these river basins were asked what uncertainties they encountered in their professional work life and how they confronted them. Analysing these dialogues we identified several important parameters of how uncertainties get framed. Our assumption is that making framing of uncertainty explicit for water managers will allow for better dealing with the respective uncertainty situations. Keywords Framing - Uncertainty - Water management practic

    Proximity curves for potential-based clustering

    Get PDF
    YesThe concept of proximity curve and a new algorithm are proposed for obtaining clusters in a finite set of data points in the finite dimensional Euclidean space. Each point is endowed with a potential constructed by means of a multi-dimensional Cauchy density, contributing to an overall anisotropic potential function. Guided by the steepest descent algorithm, the data points are successively visited and removed one by one, and at each stage the overall potential is updated and the magnitude of its local gradient is calculated. The result is a finite sequence of tuples, the proximity curve, whose pattern is analysed to give rise to a deterministic clustering. The finite set of all such proximity curves in conjunction with a simulation study of their distribution results in a probabilistic clustering represented by a distribution on the set of dendrograms. A two-dimensional synthetic data set is used to illustrate the proposed potential-based clustering idea. It is shown that the results achieved are plausible since both the ‘geographic distribution’ of data points as well as the ‘topographic features’ imposed by the potential function are well reflected in the suggested clustering. Experiments using the Iris data set are conducted for validation purposes on classification and clustering benchmark data. The results are consistent with the proposed theoretical framework and data properties, and open new approaches and applications to consider data processing from different perspectives and interpret data attributes contribution to patterns

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    Laser treatment in diabetic retinopathy

    Get PDF
    Diabetic retinopathy is a leading cause of visual impairment and blindness in developed countries due to macular edema and proliferative diabetic retinopathy (PDR). For both complications laser treatment may offer proven therapy: the Diabetic Retinopathy Study demonstrated that panretinal scatter photocoagulation reduces the risk of severe visual loss by >= 50% in eyes with high-risk characteristics. Pan-retinal scatter coagulation may also be beneficial in other PDR and severe nonproliferative diabetic retinopathy (NPDR) under certain conditions. For clinically significant macular edema the Early Treatment of Diabetic Retinopathy Study could show that immediate focal laser photocoagulation reduces the risk of moderate visual loss by at least 50%. When and how to perform laser treatment is described in detail, offering a proven treatment for many problems associated with diabetic retinopathy based on a high evidence level. Copyright (c) 2007 S. Karger AG, Basel
    • 

    corecore